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Abstract—This paper examines the possible uses of different
market mechanisms for resource allocation at different levels
of Wireless Sensor Network (WSN) architecture. The goal is to
maximize the Value of Information (VoI) for WSN users. We
discuss three different levels of WSN architecture. The lowest
level focuses on individual nodes and their basic functions
of sensing and routing. We give an example showing how
the use of auctions at individual nodes can help to efficiently
perform these functions. The middle level focuses on services
that are abstractions of applications running on sensors.
Complex applications are composed automatically from basic
ones. We discuss the use of switch options to address some
of the challenges arising in such dynamic service composition.
Finally, we consider the highest level – network deployment
and sharing – and conjecture that options may be valuable in
creating proper incentives for rational deployment and sharing
of WSNs.

Keywords-Wireless Sensor Networks (WSNs); Value of Infor-
mation (VoI); Quality of Information (QoI); Auctions; Switch
Options; Real Options.

I. INTRODUCTION

Deciding how to allocate resources to maximize Value of

Information (VoI) for network users is a challenging problem

in WSNs. There may be many users with limited trust, and

the value of information to each user may be subjective

and user specific. A reasonable way of scaling up resource

allocation in such domains may eventually be to deploy

market mechanisms that take decisions based on the explicit

worth that users are willing to assign to the information.

However, designing mechanisms that allow for both the

appropriate amount of information disclosure as well as

for efficient outcomes is a challenge in itself. As proof

of concept and to stimulate discussion in the community,

we present three different market mechanisms that can be

deployed at three different levels of WSN architecture.

The Value of Information is most easily thought of as the

amount a user who uses information from the network to

make decisions would be willing to pay for the information.

Therefore, it is reasonable to think about it as the change in
expected utility of a decision-maker who receives the infor-

mation. For example, consider a police chief deciding how

many cars to allocate and where to deploy them on a given

night. A wireless sensor network could pick out threats, aid-

ing in more effective deployment of vehicles, saving police

department resources. The same level of crime prevention

could be achieved using significantly fewer resources, and

the savings in this case could be thought of as the value of

information provided by the WSN. We note some important

preliminaries here. First, we distinguish between quality of

information (QoI), which can be represented by a vector of

objective measurements, and VoI, which depends both on

objective QoI as well as on subjective assessment of the

importance that an end-user assigns to certain information.

Hence, QoI can be measured entirely within the system that

produces information while VoI is dependent on both QoI

and exogenous information. For our purposes we assume

that VoI is externally specified or provided by an oracle,

while QoI is measured by the sensor network itself.

Second, we define three levels in WSN architecture at

which we address the resource allocation problem using

market mechanisms. These three levels also correlate with

different time ranges for the solutions, varying from tens to

hundreds of milliseconds at the first level, tens of seconds

and minutes at the second level, and days and months at

the third level. The lowest level is that of a single sensor

node involved in sensing and routing. The goal at the

node level is to collect the set of the most meaningful

measurements or to transmit the most valuable packets

first when congestion arises at a node. This is particularly

difficult in sensor networks because the congestion is often

intermittent, associated with events that move through the

network (like an edge of the forest fire, or an object tracked

by the network), and therefore traditional congestion control

mechanisms that rely on feedback from the destination to

the source do not work well. An important aspect of QoI in

sensor networks is the time delay with which information

is available to end-users. Thus, any congestion or packet

collisions will lower QoI of the information carried by

affected packets. We assume QoI is not affected by network

utilization, making resource allocation approaches based

on efficient network utilization not applicable [9], [8]. We
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demonstrate how the use of auctions on the very nodes where

temporary congestion occurs can help resolve congestion

and therefore minimize the loss of VoI.

At the mid-level, networks perform more complex func-

tions in the form of services. Basic services are often hosted

by multiple nodes, and executing them commands significant

resources (most importantly energy, but also bandwidth,

computing power, and sensing modes). More complex ap-

plications can be composed from basic services by properly

interconnecting the basic services, forming a service oriented

architecture. We suggest the use of switch options to decide

the efficient interconnection of basic services as network

conditions change dynamically.

Finally, at the high level of the WSN itself, market

mechanisms may help to optimize network deployment and

sharing. Sensor networks are spatial by nature and in cases

where many different authorities are responsible for adjacent

or overlapping spatial domains, the optimal deployment of

sensor networks and access to the data that they collect

are important issues. We show that the use of real options
could lead to the creation of proper incentives for rational

deployment and sharing of sensor networks.

The problem of decentralized resource allocation has

been studied widely in communication networks. For exam-

ple, Mainland et al propose a decentralized reinforcement-

learning based scheme for efficient vehicle tracking in a

WSN under energy constraints [7]. Congestion based pricing

mechanisms also have featured prominently in the literature

[5], [6], generalizing from the traditional domain of tollways

and airports to communication networks. The goal for such

systems is to balance externalities imposed by increased

traffic. Flat rate pricing, prevalent today, is not an optimal

strategy for service providers [6]. Fixed pricing schemes

can lead to overuse of bandwidth by exploitation of TCP

at the user end, so using congestion pricing or differentiated

QoS would help to avoid externalities. Various mechanisms

to avoid Internet congestion have been suggested (although

none have thus far gained much real-world traction) [2],

[4]. Most of these mechanisms rely on congestion feedback

from the destination to the source, an approach that is not

feasible for the intermittent congestion caused by event-

driven network flows in WSNs.

II. AN AUCTION MECHANISM FOR DISTRIBUTED

CONGESTION CONTROL

As discussed above, resource allocation is driven by VoI

that combines an objective function that measures QoI and

a subjective component that assesses how valuable informa-

tion with the given QoI is to the end-user.

In this section, we consider the low level management of

resources in WSNs, as exemplified by bandwidth allocation

in congestion scenarios. Following Chen et al [1], we

consider public safety and emergency response needs of

a VIP visiting a large city. The streets are equipped with

a sophisticated WSN composed of acoustic sensors, closed

circuit cameras, chemical fume sensors and so on. Various

state agents are present in the area to ensure the safety

of the visitor and the public, using the deployed WSNs

to monitor events. Every agency has its own mission and

priority monitoring targets. Local police may be interested

in monitoring traffic violations in the area as well as mob

behavior, whereas a federal agency is tasked with detecting

any kind of coordinated terrorist attack and dealing with

high-level threats. State agencies may also be monitoring

large vehicles entering the area, as well as individuals or

cars with suspicious mobility patterns. Another state agency

is monitoring the visitor’s car, also a high priority mission.

Suppose a vehicle with a suspicious driving pattern is

being tracked by the state agency, while a gathered mob

is continuously monitored by local police. Both targets are

getting close to the visitor’s car as they enter a nearby

intersection. Now, data packets are continuously sent to three

different sinks (agencies), all with high priority, monitoring

three different targets (visitor’s car, suspicious mob and

threatening vehicle). A noticeable problem occurs due to

the fact that all three targets are physically close, causing

congestion at nearby nodes that transmit packets to sinks.

This congestion increases network delays and may even

cause packet loss, decreasing QoI of the traces of the targets

that are of high value at that point in time. This problem will

become more complex when there are more targets with

coordinated mobility patterns involved.

Chen at al [1] formally define an auction mechanism to

solve this problem, which we summarize here. They consider

two possible goals: efficiency (minimize total loss of infor-

mation value) and equity (equalize the loss of information

value for all missions). While the value of information

could be a very general function of QoI and user-specific

importance of the information, for simplicity, we consider

a case where the utility for a mission i is a linear function

of the QoI received about mission i, U(i) = v(i)q(i, d),
where v(i) is the mission specific multiplier and q(i, d) is

the QoI for the specific mission i with the data transmission

delay d for this mission (although many more parameters

define the value of q(i, d), we explicitly refer to d, as

this is the parameter directly impacted by congestion; other

parameters, such as precision of target’s position or precision

of the time of measurement are not affected by congestion).

Theoretically, even in this simple example, it would be useful

to have v(i) dependent on the information, for example, the

closer the suspicious vehicle is to the visitor’s car, the higher

the VoI of its position. We make one further simplification in

what follows. We assume that each node maintains only one

packet for each mission because when two distinct packets

of the same mission are received at the destination, the one

with the more recent target data brings VoI to the same value,

regardless whether the other one was received or not. Hence,

each node’s maximum queue length is limited by the number
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of active missions, a requirement easily satisfied by modern

sensor nodes. Once congestion arises, the node needs to

decide in what order the waiting packets will be transmitted,

exposing them to different delays at the node. Since the

standard congestion control techniques involve destination-

to-source feedback, they are not applicable here because of

the intermittent nature of congestion that keeps moving from

one node to another in target tracking applications of WSNs.

Thus, we need to quantify the loss of information resulting

from packet delays caused by congestion. To do so, we

need to assess VoI of a piece of information. Often, VoI is

most directly related to how much it changes the uncertainty

or beliefs of the user of the information. For example,

consider a police team monitoring potential threats to a VIP.

A WSN reports the position and direction of movement of

a suspicious vehicle, enabling the police to have a current

estimate of the trajectory of this vehicle. How much does

additional, new information about the position and direction

of motion help?

There are two related ways of thinking about this: first,

how much the new information reduces uncertainty about the

position of the object being tracked. Let us compare the case

where the last observation by a node in the network was 10

minutes ago with a case where the last observation was 10

seconds ago. Clearly, new information will be more useful in

the former case than the latter. Intuitively, this is because new

information in the former case leads to a greater reduction

in uncertainty about the object position than it does in the

latter case. A useful mathematical formulation in this case

may be the reduction in entropy of the user’s belief about

the location and direction of the tracked object. If the user’s

belief is represented by a well-behaved distribution, like a

Gaussian, this could be further simplified by considering

perhaps only the variance of the distribution.

A related way of thinking about this issue is to quantify

the “surprise” element of an observation as being key to

the value of the information contained in the observation.

For example, if a suspicious vehicle was traveling slowly

in a particular direction, but suddenly made a U-turn and

accelerated sharply, that information may be more relevant

than if it just continued on its previous path. How can

this be objectively quantified? Perhaps the difference in

implied probability distributions of the location of the object

could be important. A measure like KL divergence of the

two distributions (the post-observation distribution and pre-

observation distribution) may be helpful in quantifying VoI

in cases like this.

Chen at al [1] use the reduction of uncertainty approach

and measure the loss of value as proportional to the ad-

ditional delay incurred by the packet in congestion. To

quantify, let tm denote the time at which target was sensed

at loc(tm). After time Δt, its new location loc(tm + Δt)
is uncertain. The maximum feasible acceleration of a ve-

hicle is limited, therefore according to equations of motion

Figure 1. Auction Based Bandwidth Allocation Framework

|loc(tm+Δt)− loc(tm)| ∝ (Δt)2. Hence, the VoI decreases

quadratically with the delay. Denoting by Ci all the constants

of the proportionality of the VoI to the square of the packet

delay, the loss of VoI for mission i, defined as the difference

between the VoI of a packet not delayed by congestion

and the packet arriving with such delay, is Li = Ci(Δt)2.

A node experiencing congestion can choose one of the

following two ways to decide the order in which packets

are to be sent from the congested node:

1. Equalizing utility loss among all applications, i.e., ∀
missions i and j ΔLi = ΔLj

2. Minimizing the total utility loss, i.e., min
∑

i Li

Chen at al [1] considered only linear term of the VOI

loss that is dominant when the prediction of the future target

position is not made. The implementation of this approach

done by Chen at al [1] is depicted in Figure 1. We assume

that each packet carries with it the priority of the mission

for which it is reporting data. As proposed in [1], a Second

Price Auction is held at the point of congestion. The bids

are entered by the target update packets that compete for

transmission slots at the congested node, using the predicted

utility loss as a form of currency. The auction winning

packet will receive the currently available transmission slot.

Packets losing the auction will obtain additional funds for

the future auctions of transmission slots on the same node,

as the auctions repeat for every transmission slot of that

node until congestion is resolved. The additional funds

received by each losing packet are proportional to its VoI

loss incurred by the delay of its transmission. It should

be noted that the congestion is resolved locally at the

point of congestion. Conducting such distributed auctions

at each node whenever congestion arises there minimizes

the overhead of overall congestion control. In particular,

no destination-to-source feedback is needed. Such feedback,

which is used in traditional congestion control protocols,

would delay the deployment of congestion control process,

thus, they would increase the VoI loss caused by congestion.

Chen et al [1] show that the auction allocation mechanism

for congestion control performs better than equal allocation

or mission priority proportional allocation.
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III. SWITCH OPTIONS FOR DYNAMIC SERVICE

COMPOSITION

Dynamic service composition for sensor networks was

originally introduced by Geyik et al. [3] who characterized

a service abstractly as a program running on a sensor node

that requires a certain set of inputs and produces some

data (output) characterized by a set of metadata. An auto-

mated composition of higher functionality service creates a

dataflow graph by interconnecting a set of services together.

Choosing recursively the lowest cost of input providers (that

is other services that are able to provide some of the required

inputs) is termed service selection. This problem can be

seen as the optimal selection of services rather than the

generation of the optimal dataflow graph [3] because optimal

interconnections can easily be chosen once the participating

nodes are selected.

Switch options are usually defined as having multiple

plans readily available for execution and draw a direct

analogy to the service selection task that was described

above. When making investments decisions, there could be

multiple options to proceed (e.g., expand, scale down or shut
down investment) or to use different operating modes for the

investment (e.g., having an option to use different materials

production, according to market conditions). The additional

funds needed to make these options available should be taken

into account when valuing a project. The value of a switch

option is calculated as the sum of the benefits of switching

from one option to another, whenever it is profitable.

We propose to use the switch option approach when

choosing the input providing services. The currently selected

services are considered an investment. The risks involved

in choosing them are reduced by periodically re-examining
their selection in view of the current network conditions and

switching to a new service composition when profitable. Ini-

tially different compositions of services that are considered

but not chosen as suboptimal are kept as switching options
and may be chosen in the future.

A. Methodology

We propose two phases for service selection: (i) Test

Phase and (ii) Service Selection Phase. The test phase runs

multiple possible services and evaluates at what conditions

switching between the input providers improves the VoI

attained. Furthermore, the probabilities of these conditions to

arise are also calculated, so we can determine how profitable

it is to keep different selections available. Since extra effort

is expended during the test phase and the cost of this phase

needs to be made up by future gains, the length of this phase

is limited.

The service selection phase starts with the selection that

has highest expected gain. A switch to another selection

is guided by the data collected during the test phase. Let

the random variables VA, VB denote the (instantaneous)

VoI of services A and B with the same functionality;

Microphone Camera

Microphone

Microphone

Camera

Camera

(a) A Parking Garage Example to Explain Switch Op-
tions Methodology
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itoring Service

Microphone

Camera

Service Value

Time

Extreme Noise Extreme Noise Extreme Noise

150

300

500

600

Switch
Switch

Switch
Switch
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(c) Value of Switching Option During the Test Period

Figure 2. A Real World-Scenario for Switch Options

these are implicitly defined by the state of network and its

environment. Observing frequency of such states over the

test phase, we can estimate the probability density function

p(VA, VB) of having VA and VB as the instantaneous VoI

of services A and B, respectively. Then, the expected value

of the ability to switch from service A to service B is:

V (A → B) =

∫ ∞

VB=0

∫ VB

VA=0

(VB−VA) p(VA, VB) dVA dVB ,

which is in effect a summation over all VB > VA. Note

that this is an idealized equation that does not take into

account costs of measurement of the state, costs of switching

between options, quality of state measurements (sensors can

easy measure the noise level in a garage example but not

whether there is an accident or not) etc. – incorporating

such considerations is an important element of future work.

B. Real-World Scenario

Figure 2a shows a sensor network implemented in a

covered parking garage. There are two types of services
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in this network: (i) a microphone service of readings from

an acoustic sensor to monitor the sound volume, and (ii) a

camera service that provides views of the area covered by

the microphone monitors. We consider a long term monitor-

ing mission during which automated service selection may

choose to utilize one or both of the services in monitoring.

An illustration of expected test period results for this

application is shown in Figure 2b. The test measure how

external factors affect the VoI and benefits produced by each

service. Clearly, the camera view for an area will produce

the best results, but running a camera is a costly operation

(due to its energy consumption and maintenance costs) in

mid-term applications, so the benefit of using this service

is low when no events are happening in the garage. Figure

2b also shows that when the VoI of the microphone service

drops below a certain level, there is loud noise in the garage,

and the VoI provided by the camera service increases. Of

course, loud noise often signifies an important event in

which case the VoI (the first factor in the above equation)

increases even more, giving the camera service a higher

benefit than normal. On the other hand, the microphone

gives faulty measurements when the noise level is high. This

example shows how the switch option balances the Value
of Information (VoI) provided by the services with the cost

incurred by it.

Once the costs of running multiple services in each area

during the test period have been incurred, the service se-

lection mechanism can switch between the microphone and

the camera service, and can do it with increased efficiency

based on information about the conditions that are beneficial

for switching gathered during test period. In the long run,

the costs of the service test phase is compensated by clever

switching actions, which it enables with the information it

acquires. Figure 2c shows the advantage that could have

been gained had switching information been available during

the test period shown in Figure 2b. The area difference

between the curves of Figure 2c and the curve of the

microphone service (since it is best on average) in Figure

2b quantifies the extra value of the switching option.

IV. DECENTRALIZED COLLABORATIVE MARKETS FOR

WIRELESS SENSOR NETWORK RESOURCES

Wireless sensor networks are typically deployed for the

purpose of providing better information to a decision-maker.

For example, consider a WSN deployed in a forest: the

primary purpose may be to monitor temperature and envi-

ronmental conditions to detect forest fires and prevent them

from spreading. Extreme temperature readings are a critical

but rare event. It is absolutely necessary that the network

performs well at detecting fires when they occur. At the same

time, given the rarity of such a circumstance, the sensors in

the network could also serve other roles: monitoring wildlife

activity, rainfall levels, etc. Deploying the network is costly,

so the benefits must outweigh the cost of deployment. These

benefits are again defined by the Value of Information (VoI)

provided to the users of the network.

As WSNs start being deployed systematically, we must

reason explicitly about the inherent costs, benefits, and trade-

offs, as well as the sharing of the deployed network among

multiple entities and for different purposes. The natural

language for this reasoning is the language of economics,

and we need to think about the market for information that is

provided by a WSN, and how it can interact with the design

of such a network. The key players in the marketplace are

the service provider, who deploys and maintains the WSN,

and users who value the information provided by the WSN

and are willing to pay for it. Often one of the users may

actually be the service provider.

Continuing with our forest-monitoring example, suppose

the state of New York deployed a WSN in its forests, and the

state of Massachusetts deployed one in its own. Many fires

are capable of spreading across the Massachusetts-New York

border, so it is important for each state to be aware of what is

going on in the forests of its neighbor. Instead of deploying

its own networks in the neighboring states, Massachusetts

can acquire access to data from New York when it is critical,

and vice versa. Yet, a blanket agreement to share all data is

not necessarily a good idea, because producing and sending

data is costly, and non-critical data that has value to New

York may not be as valuable to Massachusetts. What is

needed is a dynamic market mechanism capable of allowing

trades between users and service providers, and allocation

of resources that can be relied upon in emergency situations.

While non-trivial, no other decentralized approaches can

efficiently arrive at the right tradeoff between the value

of information provided by WSNs and the costs of their

deployment and use.

In this section, we sketch a vision for some possible ways

in which market mechanisms may help to solve the problem

of resource allocation in WSNs, leading to appropriate

payments in exchange for the VoI provided to users. For our

purposes, we assume, as before, that the decision-makers

who use the information provided by the WSN are in

possession of well-calibrated estimates of the value of the

information that the WSN provides to them. Therefore, we

assume that the utility to the user is exogenously specified.

Real Options for Emergency Information. For simplic-

ity, assume that Massachusetts and New York only have

interest in each other’s WSN information if it is potentially

predictive of the existence of a forest fire in the neighboring

state, and that the rest of the time they have no value for

information from the other. However, since a forest fire is a

critical emergency situation, the value of information related

to forest fires is high. One possibility would be for the states

to write and buy real options on the transmission of their

data (we note that real options are a convenient formalism

– similar outcomes can also arise out of alternative decision

analysis techniques). For example, New York could write,
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and Massachusetts purchase, an option that enables Mas-

sachusetts to use up to 40% of the WSN resources available

to New York. The option would be American style, so that

Massachusetts could exercise it at any time that it becomes

necessary, triggered by the existence of a forest fire that may

spread to Massachusetts.

Several interesting issues arise once we think of the option

in these terms. (i) New York state would have to provision

extra resources so that it can always reliably provide the

services it is writing the option on. It must never be the

case that Massachusetts cashes in on the option and New

York is unable to provide the service. Therefore, the WSN

may need to be over-provisioned for emergency situations.

However, the cost of this over-provisioning can be made

up for through the payments made to New York when

Massachusetts buys the options. (ii) Massachusetts must

become aware of information critical to its decision-making

about whether or not to exercise the option. This leads to

issues of trust between New York and Massachusetts –for

example, if Massachusetts were to completely trust New

York’s words, and New York deceived Massachusetts into

thinking a situation was an emergency when it was not, the

option would be needlessly exercised. (iii) Standard option

pricing methodologies may have to be extended to deal with

the idiosyncrasies of real, deployed WSNs; for example the

information needed to decide whether to exercise the option,

as discussed above. Further, especially in emergency re-

sponse, which is necessary when rare events occur, standard

methodologies based on assumptions of normality that use

the variance of expected returns (or return-equivalents) may

no longer be the right approach.

While the research questions raised are significant, real

options methodology has the potential to deliver value in

several ways. It could lead to the establishment of a decen-

tralized collaborative market that guarantees the availability

of information when needed. Options provide a market-

based solution for resource allocation and management

between competing or cooperative WSN service providers,

potentially allowing them to recover infrastructure and re-

source costs encountered in deployment. The cost that each

party would pay in the form of options in practice is less than

the managerial and deployment cost of a fully fledged WSN.

Moreover this price will also be lower than the price a party

would pay if it only decided to buy services at the time

of an emergency event, when sellers could charge higher

prices in response to demand because the information has

the highest value to safety. While we have discussed this so

far in the context of two parties, the extension to multiple

service providers and users is obvious.

V. CONCLUSION

This paper discusses resource allocation in WSNs. We

propose the application of market mechanisms to address

problems of resource allocation from the very low level of

a sensor node to the highest level of WSN deployment. We

have simulated an application of auctions at the node level

and found it to be very efficient in resolving congestion.

At the mid-level of WSN architecture we are working

on application of switch options to dynamically compose

complex services by optimally interconnecting basic ser-

vices. As future work, we will further investigate, sketched

here, application of real options to create a decentralized

collaboration among WSN owners to deploy WSNs in a

cost effective manner.
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